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Fourier Analysis

Note: We use the following notations L1(R) = L1 and L2(R) = L2.

1. Prove that f, f̂ ∈ L1 then f ∈ L2.

Proof. Since f ∈ L1, f̂ is bounded by ‖f‖L1 . Then f̂ ∈ L2 as f̂ ∈ L1 which implies

f ∈ L2.

2. Let f(x) =
x

2
for −π < x < π, 0 for x = ±π. Write down the Fourier series of f and

use it to show that
∞∑
n=1

1

n2
=
π2

6
.

Proof. Since f is an odd function, its Fourier series coefficients an = 0, n ≥ 0. Further

bn =
1

π

∫ π

−π
f(x) sinnx =

(−1)n+1

n
, n ≥ 1.

Then Fourier series of f is the following

∞∑
n=1

bn sinnx =
∞∑
n=1

(−1)n+1

n
sinnx.

By Parseval’s theorem we have

1

π

∫ π

−π
[f(x)]2dx =

a20
2

+
∞∑
n=1

(a2n + b2n) =
∞∑
n=1

1

n2
,

and it is easy to see that
1

π

∫ π
−π[f(x)]2dx =

π2

6
.

3. Let f(x) = 1 for 0 < x < π, and f(x) = −1 for −π < x < 0, 0, x = ±π. Find the

discrete Hilbert transform of f .

Proof. First note that the Fourier coefficients of the Fourier series of f are given by

an = 0, n ≥ 0 and bn =
2(1− (−1)n)

nπ
. Then Fourier series of f is given by the

∞∑
n=1

bn sinnx =
∞∑
n=1

2(1− (−1)n)

nπ
sinnx =

∞∑
n=1

2(1− (−1)n)

nπ

einx − e−inx

2i

1
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The discrete Hilbert transform in the setting of the Fourier series is given by the

formula

H
(∑
n∈Z

cne
inx
)

= −i
∑
n≥1

cne
inx + i

∑
n≤−1

cne
inx.

Thus the discrete Hilbert transform is given by the

∞∑
n=1

(1− (−1)n)

nπ

−ieinx − ie−inx

2i
=
∞∑
n=1

2(−1)n)− 1

nπ

einx + e−inx

2
=
∞∑
n=1

2(−1)n)− 1

nπ
cosnx.

4. f, g ∈ L1, f, g ≥ 0 and f = f ∗ g then prove that f = 0 a.e..

Proof. Case 1: If f̂(0) = 0, then

‖f‖L1 =

∫
R
|f(x)|dx =

∫
R
f(x)dx =

∫
R
f(x)ei0xdx = f̂(0) = 0

which implies f = 0 a.e..

Case 2: If f̂(0) 6= 0, then there exists ε > 0 such that f̂(t) 6= 0 for |t| < ε as f̂ is

continuous. Since f = f ∗ g and there f̂ = f̂ ĝ, ĝ(t) = 1 for |t| < ε. In particular

ĝ(t) = ĝ(0) for |t| < ε which implies∫
R
g(x)e−itxdx =

∫
R
g(x)dx⇒

∫
R
(1− cos tx)g(x)dx = 0

which implies g = 0 a.e. as g ≥ 0. Finally, f = f ∗ g = f ∗ 0 = 0 as an element of L1.

So f = 0 a.e..

5. Compute the Fourier transform of x2e
−x2

2 .

Proof. Since power series converge uniformly within all circles of convergence, and

term-wise integration is valid for uniformly convergent series,

f̂(s) =

∫ ∞
−∞

e−
x2

2 e−ixs dx

=

∫ ∞
−∞

[ ∞∑
n=0

(−ixs)n

n!

]
e−

x2

2 dx

2
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=
∞∑
n=0

(−is)n

n!

∫ ∞
−∞

e−
x2

2 xn dx

The integral value is zero if n is odd; if n = 2m, then an application of Gamma

function yields the following∫ ∞
−∞

e−
x2

2 x2m dx =
√

2π
(2m)!

m!2m
.

Replacing these facts in the above expression it follows that

f̂(s) =
√

2πe−
s2

2 .

Recall that x̂nf(x)(s) = in
dn

dsn
f̂(s). Then for n = 2 we have

x̂2e−
x2

2 (s) = i2
d2

ds2

√
2πe−

s2

2 =
√

2πe−
s2

2 (1− s2).

6. Show that if f ∈ L1 and
∫
R x

2|f̂(x)|dx < ∞, then f is twice continuously differen-

tiable.

Proof. First we will show that f̂ ∈ L1(R). Since f ∈ L1, f̂ is continuous and therefore

it is bounded on [−1, 1]. Say it is bounded by M > 0.∫
R
|f̂(x)|dx ≤

∫
|x|≤1
|f̂(x)|dx+ ≤

∫
|x|>1

|f̂(x)|dx

2M+ ≤
∫
|x|>1

x2|f̂(x)|dx

= 2M+ ≤
∫
x∈R

x2|f̂(x)|dx <∞

Thus f̂ ∈ L1. By the inverse Fourier transform we have f(x) =
∫
R f̂(t)eitxdt. Now

f̂(x+ h)− f̂(x)

h
=

∫
R
eitx

[eith − 1]

h
f̂(t)dt.

The integrand in the above equation is bounded by finite number for |x| ≤ 1 and

for |x| > 1 it is bounded by x2|f̂(x)| which is in L1. Further, this integrand tends

to itf̂(t)eitx point-wise, hence by the Lebesgue dominated convergence theorem it

3
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converges to itf̂(t)eitx in the L1 norm. This implies that, as h → 0, the right hand

side of the above equation converges to inverse Fourier transform of itf̂(t) at x, i.e.,

f ′(x) = (itf̂)(̌x). By applying similar argument it can be shown that f̂ is twice

differentiable with f ′′(x) = (i2t2f̂)(̌x) and the second derivative is continuous as it is

inverse Fourier transform of x2f̂(x) ∈ L1 function.

7. Let f = I[0,1). Prove that
∞∑

n=−∞

|f̂(t − 2πn)|2 =
1

2π
a.e. and hence prove that

∞∑
n=−∞

sin2(πt)

(t+ n)2
is a constant. Compute this constant.

Proof. Since the integer translates {φ(x− k) : k ∈ Z} of a scaling function forms an

orthonormal family, i.e., for k 6= m

0 = 〈f(x− k), f(x−m)〉

= 〈f̂(x− k), f̂(x−m)〉 (Parseval′s Identity)

= 〈ê−itkf̂(t), e−itmf̂(t)〉

=

∫
R
eit(m−k)|f̂(t)|2dt.

Take m− k = p. Thus for p 6= 0 we have

0 =

∫
R
eitp|f̂(t)|2dt

=
∞∑

n=−∞

∫ 2π(n+1)

2π

eitp|f̂(t)|2dt

=
∞∑

n=−∞

∫ 2π

0

eitp|f̂(t− 2nπ)|2dt

=

∫ 2π

0

eitp[
∞∑

n=−∞

|f̂(t− 2nπ)|2]dt.

As a consequence of the above equations the 2π-periodic function

∞∑
n=−∞

|f̂(t− 2nπ)|2
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has Fourier coefficients cn equal to zero for n 6= 0 and

c0 =
1

2π

∫ ∞
−∞
|f̂(t)|2dt =

1

2π

∫ ∞
−∞
|f(t)|2dt =

1

2π
.

Thus
∞∑
−∞

|f̂(t− 2nπ)|2 =
∞∑
−∞

cne
int =

1

2π
.

Since Fourier transform of the Haar scaling function f = I[0,1) is f̂(t) = e−it/2
sin(t/2)

t/2
,

the above formula for f gives us

1

2π
=

∞∑
n=−∞

|f̂(t− 2nπ)|2

=
∞∑

n=−∞

4 sin2(t/2− nπ)

(t− 2nπ)2
a.e.

=
∞∑

n=−∞

4 sin2(t/2)

(t− 2nπ)2
a.e.

Now replace t by 2πt, we have

∞∑
n=−∞

4 sin2(tπ)

(2πt+ 2πn)2
=

1

2π
a.e.⇒

∞∑
n=−∞

sin2(tπ)

(t+ n)2
=
π

2
a.e.
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